熱噴涂技術因工藝的靈活性與可噴涂材料的廣泛性,目前已經在航空航天、石油化工、電子電氣、汽車、醫療、海洋、礦業等領域得到了越來越多的領域獲得廣泛的應用。
一、熱噴涂技術原理
根據國際標準GB/T18719-2002的定義,熱噴涂技術是利用熱源將噴涂材料加熱只溶化或半溶化狀態,并以一定的速度噴射沉積到經過預處理的的基體形成涂層的方法,賦予基體表面特殊功能的目的。
影響熱噴涂涂層性能的主要因素是原料在噴涂焰流中的熔融狀態(溫度)和飛行速度(微粒的動能)。在大氣等離子噴涂之后出現的各種熱噴涂技術,無一不是通過提高微粒溫度或速度來獲得性能優異的涂層。此外,由于等離子噴涂、爆炸噴涂等技術無法使用納米粉體進料,在制備納米結構涂層時只能通過造粒將其制為微米級粉體用于噴涂,噴涂工藝和涂層性能均受到限制。因此,研究人員還開發了懸浮液等離子噴涂(SSPS),以便獲得特定組織的納米結構涂層。
熱噴涂技術工藝方法很多,但無論何種工藝方法,噴涂過程中形成涂層的原理和涂層結構基本一致。熱噴涂形成涂層的過程一般經歷四個階段:噴涂材料加熱溶化階段、霧化階段、飛行階段、碰撞沉積階段。
1、加熱溶化階段
當噴涂材料為線(棒)材時,噴涂過程中,線材的端部連續不斷地進入熱源高溫區被加熱溶化,形成溶滴;當噴涂材料為粉末時,粉末材料直接進入熱源高溫區,在行進的過程中被加熱至溶化或半溶化狀態。
2、霧化階段
線(棒)材在噴涂過程中被加熱溶化形成溶滴,在外加壓縮氣流或熱源自身氣流動力的作用下,將線(棒)材端部溶滴霧化成微細溶粒并加速粒子的飛行速度;當噴涂材料為粉末時,粉末材料被加熱到足夠高溫度,超過材料的熔點形成液滴時,在高速氣流的作用下,霧化破碎成更細微粒并加速飛行速度。
熱噴涂技術涂層形成原理
3、飛行階段
加熱溶化或半溶化狀態的粒子在外加壓縮氣流或熱源自身氣流動力的作用下被加速飛行。粒子飛行過程中噴涂粒子首先被加速,隨著飛行距離的增加而減速。
4、碰撞沉積階段
具有一定溫度和速度的噴涂粒子在接觸基體材料的瞬間,以一定的動能沖擊基體材料表面,產生強烈的碰撞。在碰撞基體材料的瞬間,噴涂粒子的動能轉化為熱能并傳遞給基體材料,在凹凸不平的基材表面上產生形變。由于熱傳遞的作用,變形粒子迅速冷凝并伴隨著體積收縮,其中大部分粒子呈扁平狀牢固地粘結在基體材料表面上,而另一小部分碰撞后經基體反彈而離開基體表面。隨著噴涂粒子束不斷地沖擊碰撞基體表面,碰撞一變形—冷凝收縮一填充連續進行。變形粒子在基體材料表面上,以顆粒與顆粒之間相互交錯疊加地粘結在一起,而沉積形成涂層。
|